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A Neural Network for Featr Extraction

Nathian Intrator
Div. of Applied Mlathemiatics, and

Center for Neural Science
Brown University

Provic'ec, RI 0291i,2

ABSTRACT
--qhe paper suggests a statistical framework for Ile paramieter esti-
mation problem associated with unsupervised learing III a nieural
network, leading to an exploratory projection pursuit ntwor-Uk that
performs feature extraction, or dlimensiontality reduction.

1 INTRODUCTION

The search for a possible presence of sonic unspecified structure Ii a high diint-
sional space can be difficult due to the Curse of d0 ~~ai~probhnk.t iLilit 0.N
the inherent sparsity of high dimensional spaces. Due to this" problem, uniforndiv
accurate estimations for all smooth functions are not p(o ,ibll, In high dimiension,
with practical sample sizes. (Cox, 1984, Barron, 1988S).

Recently, exploratory projection pursuit (PP) has b~eent considcred (.Jonies, ItJ3 Is a
potenitial method for overcoming the curse of dinien-sionalit y problenjl~ -4S,
and new algorithms were suggested by Friedmian {-±4-+ and by flal ~A9 .Q~
The idea is to find low dimensional projections that provide thle miost revealing
views of the full-dimensional data emphasizing the discovery of nonlinear effects
such as clustering.

Many of the methods of classical mnultivariate anialysis turn out to be special casess
of PP methods. Examples are principal component analysis, factor analysis. and
discrimiinant analysis. The various PP miethods (liffer by the projection index opti-
mized.7



Neural networks seem promising for feature extraction, or dimensionality reduction.
mainly because of their powerful parallel computation. Feature detecting functions
of neurons have been studied in the past two decades (von der Malsburg, 1973. Nass
et al., 1973, Cooper et al., 1979, Takeuchi and Aniari, 1979). It has also been shown
that a simplified neuron model can serve as a principal component analyzer (Oja.

1982).

This paper suggests a statistical framework for the parameter estimation problem
associated with unsupervised learning in a neural network, leading to an exploratory
PP network that performs feature extraction, or dimensionality reduction, of the

training data set. The formulation, which is similar in nature to PP, is based on
a minimization of a cost function over a set of parameters, yielding an optimal
decision rule under some norm. First, the formulation of a single and a multiple
feature extraction are presented. Then a new projection index (cost function) that
favors directions possessing multimodality, where the multimodality is measured
in terms of the separability property of the data, is presented. This leads to the
synaptic modification equations governing learning in Bienenstock. Cooper, and
Munro (BCM) neurons (1982). A network is presented based on the multiple feature
extraction formulation, and both, the linear and nonlinear neurons are analysed.

2 SINGLE FEATURE EXTRACTION

We associate a feature with each projection direction. With the addition of a
threshold function we can say that an input posses a feature associated with that
direction if its projection onto that direction is larger than the threshold. In these
terms, a one dimensional projection would be a single feature extraction.

The approach proceeds as follows: Given a compact set of parameters, detfine a

family of loss functions, where the loss function corresponds to a decision inade by
the neuron whether to fire or not for a given input. Let the risk be tile a~elaged

loss over all inputs. Minimize the risk over all possible decision rules, and then

minimize the risk over the parameter set. In case the risk do,-. n.-,t yield a inmeaningful

minimization problem, or when the parameter set over which th e iinizatin takc-

place can be restricted by some a-priori knowledge. a penalty. I.e. : lnea1.,IC on thL,

parameter set, may be added to the risk.

Define the decision problem (f0, -7, P, L. .4), where I .......... " ' .z " '.
is a fixed set of input vectors, (Q, n, P) the corresponding probability .pace. .4 -

{0,1} the decision space, and {L0}¢EB.", Lo : Q , .4 -. I? is the fanily of lo's

functions. RM is a compact set in R-1. Let D be the s-pace of all deci-on rules.

The risk R9 : ) " R, is given by:

V11 C
R,(6) = P(x(")Lo(x '' , (x. . . (2. 1

For a fixed 0, the optimal decision 6 is chosen so that: 0
Ro9(6o) = iin{Ro0(1)} (2.2)
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Since the minimization takes place over a finite set, the inirinizer exists. In par-
ticular, for a given z') the decision 60(.r')) is chosen so that Ls(x ('), 6a(X('))) <Ledz"), 1 - 6(:))

Now we find an optimal 6 that minimizes the risk, namely, 8 will be such that:

R (bj) = min {Ro(be)}. (2.3)
OEB

M
4

The minimum with respect to 0 exits since B' is compact.

R8(60) becomes a function that depends only on 0, and when 8 represents a vector
in RN, R9 can be viewed as a projection index.

3 MULTI-DIMENSIONAL FEATURE EXTRACTION

In this case we have a single layer network of interconnected units, each performing
a single feature extraction. All units receive the same input and the interaction be-
tween the units is via lateral inhibition. The formulation is similar to single feature
extraction, with the addition of interaction between the single feature extractors.
Let Q be the number of features to be extracted from the data. The multiple de-

cision rule 60 = (61),..., 6
( Q)) takes values in A = {O, 1}Q. The risk of node k

is given by: Rot)(6) = Z=l P(x(i))L~o)(x(), (k)(x('))), and the total risk of the
network is Re(6) = -Q 1 R(k)(6). Proceeding as before, we can minimize over the
decision rules 6 to get 6,9, and then minimize over 8 to get 8, as in equation (2.3).

The coupling of the equations via the inhibition, and the ielation between the
different features extracted is exhibited in the loss function for each node and will
become clear through the next example.

4 FINDING THE OPTIMAL 9 FOR A SPECIFIC LOSS
FUNCTION

4.1 A SINGLE BCM NEURON - ONE FEATURE EXTRACTION

In this section, we present an exploratory PP mthod with a ..pccific los function.
The differential equations performing the optimization turn out to Le a good ap-
proximation of the low governing synaptic weight niodification in the BC. theory
for learning and memory in neurons. The formal presentation of the theory, and
some theoretical analysis is given in (Bienenstock. 1980, Bienenstock et al.. 1982).
mean field theory for a network based on these ncurons is presented in (Scofield
and Cooper, 1985, Cooper and Scofield, 1988), more recent analyis based on the
statistical viewpoint is in (Intrator 1990), computer simulations and the biological
relevance are discussed in (Saul et al., 1986, Bear et al., 1987, Cooper et al., 1988).

We start with a short review of the notations and definitions of BC'M! theory.
Consider a neuron with input vector x = (x, .... r.\.), synaptic weights vector
m = (Mi,..., MN), both in RN, and activity (in the linear region) c = • in.



Define O, = E[(z-m)2 ], #k(CE,) = c2 - Cm, 0(c, 19') c- ce,,. The input
z, which is a stochastic process, is assumed to be of Type II p mixing, bounded, and
piecewise constant. The p mixing property specifies the dependency of the future
of the process on its past. These assumptions are needed for the approximation of
the resulting deterministic equation by a stochastic one and are discussed in detail
in (Intrator, 1990). Note that c represents the linear projection of x onto I, and
we seek an optimal projection in some sense.

The BCM synaptic modification equations are given by: ii = 1(t)4(x • m, Omn)x,
m(0) = m 0 , where it(t) is a global modulator which is assumed to take into account
all the global factors affecting the cell, e.g., the beginning or end of the critical
period, state of arousal, etc.

Rewriting the modification equation as m = p(t)(x • m)(x - 1 - 40M)X , we see
that unlike a classical Hebb-Stent rule, the threshold 0m is dynamic. This gives
the modification equation the desired stability, with no extra conditions such as
saturation of the activity, or normalization of I m J, and also yields a statistically
meaningful optimization.

Returning to the statistical formulation, we let 0 = m be the parameter to be
estimated according to the above formulation and define an appropriate loss function
depending on the cell's decision whether to fire or not. The loss function represents
the intuitive idea that the neuron will fire when its activity is greater than some
threshold, and will not otherwise. We denote the firing of the neuron by a =.

Define K = -ju O(s, Om)ds. Consider the following loss function:

it ,IfOzmK;(s,Em)ds, (X ,n) 0 ,, a = 1

LK(x,a) Lm(,a)= -pf ' o(s, On)ds, (x.- in) 0 C, a 1 (1)
-L fA m' O(S, ®,,)ds. ((x a)) 0,,,, = 0

- p ftrn) O(s, 0,,. )ds, (.. li) > - .. a 0
K 0E,'( -11

It follows from the definition of LO and from the definition of 6g in (2.2) that

(z.m) 1 _
L.(x,6m)= -1A O(s, e,)ds - {(x in)- - E in . (4.2)

o 3

The above definition of the loss function suggests that the decision of a neuron
whether to fire or not is based on a dynamic threshold (.r . i7) > 0,-,. It turns out
that the synaptic modification equations remain the sanwi if the decision is based
on a fixed threshold. This is demonstrated by the following loss function, which

leads to the same risk as in equation (4.3): K -t fVo, o(s, 0., )ds,

[ -Itfo o(s, Om)ds, (.. 7n) > 0, a = 1

Le(x, a) = L,(x, a) K - Lt fon 0s, Gm,)ds, (x. in) < 0, a = 1 (4.1')it fo) o(s, 0)ds, (X. ,,) < 0, (1 = o
K '- it fo' 0(s, E,)ds, (x. ,,n) > 0, a = 0



The risk is given by:

Rq(ba) J mJ[xn)'] -E
2 ,(.r in)2jj. (4.3)343

The following graph represents the 0 function and the associated loss function
L,.(x, 6,m) of the activity c.

THE 0 FUNCTION THE LOSS FUNCTION

Fig. 1: The Function op and the Loss Functions for a Fixed m and em.

From the graph of the loss function it follows that for any fixed m and 0,, the loss
is small for a given input x, when either z • ?n is close to zero or negative, or when
x -m is larger than 0 , This suggests, that the preferred directions for a fixed 0,
will be such that the projected single dimensional distribution differs from normal
in the center of the distribution, in the sense that it has a multi-modal distribution
with a distance between the two peaks larger than 6m. Rewriting (4.3) we get

R 8) E[(x 1)rno) 2] 3 {( . n) i - (4.4)E2[(X. M)1 ]  3 E[xn)!I

The term E[(z. m) 3]/E 2 [(X. mn)2] can be viewed as some measure of the skewness of
the distribution, which is a measure of deviation from normality and therefore an
interesting direction (Diaconis and Friedman, 1984), in accordance with Friedman
(1987) and Hall's (1988, 1989) argument that it is best to seek projections that
differ from the normal in the center of the distribution rather than in the tails.

Since the risk is continuously differentiable, its minimization can be done via the
gradient descent method with respect to m, namely:

am i a i0,) =pE'( ,0at m,

Notice that the resulting equation represents an averaged deterministic equation
of the stochastic BCM modification equations. It turns out that under sitable
conditions on the mixing of the input x and the global function p. equation (-1.5) is
a good approximation of its stochastic version.

When the nonlinearity of the neuron is emphasized, the ncron's activity is then
defined as c = a(z • ni), where a usually represents a smooth sigmoidal function.
e, is then defined as E[ o 2 (x . in)], and the loss function is similar to the one
given by equation (4.1) except that (.r in) is replaced by o(,r in). The gradient of



the risk is given by: -VR,( 6 m) iE[(5(o.(x "1), O,)'x], where q' represents

the derivative of o, at the point (x m). Notv that a may rtpfe tut any nonlinear
function, e.g. radial symmetric kernels.

4.2 THE NETWORK - MULTIPLE FEATURE EXTRACTION

In this case we have Q identical nodes, which receive the same input and inhibit
each other. Let the neuronal activity be denoted by ck = X • nk. We define the
inhibited activity k= ck - r/ e c, and the threshold -5k -EV]. In a more
general case, the inhibition may be defined to take into account the spatial location
of adjacent neurons, Pamely. Ck = E, Akcj, where Ajk represents different types
of inhibitions, e.g. Mexican hat. Since the following calculations are valid for both
kinds of inhibition we shall introduce only the simpler one.

The loss function is similar to the one defined in a single feature extraction with the
exception that the activity c = x. m is replaced by 3. Therefore the risk for node k is
given by: Rk = -E{E[j] -(Etcj,])2 }, and the total risk is given by R = -'Q1 Rk.3 k. k - =1

The gradient of R is given by:

OR

-- p[1 - 7(Q - 1)]E[O(jk, bkn -. (4.6)

Equation (4.6) demonstrates the ability of the network to perform exploratory pro-
jection pursuit in parallel, since the minimization of the risk involves minimization

of nodes 1,..., Q, which are loosely coupled.

The parameter 77 represents the amount of lateral inhibition in tire ne'twork, and
is related to the amount of correlation between the different features sougiht by
the network. Experience shows that when i a 0. the different units may all be-
come selective to the simplest feature that can be extracted fronm the data. When
77(Q- 1) = 1, the network becomes selective to those inputs that are vety far apart
(under the 12 norm), yielding a classification of a small portion of the data. and
mostly unresponsiveness to the rest of the data. When 0 <. i Q - 1) < 1. the inet-
work becomes responsive to substructures that may be common to ,,cvral diffcrent
inputs, namely extract invariant features in the data. The optimal vaiat- Of q has

been estimated by data driven techniques.

When the non linearity of the neuron is eniphasizcd the activity Is dt.fiiid tas in
the single neuron case) as ck= r(X • 171k). ,- k . and Rk are detined as before. In
this case -770'(xz 0-(X -1  ),Xr, and equation (.1.6) becones:

AE ,, ) - ?iJ . '(. • , ).r (. 171

4.3 OPTIMAL NETWORK SIZE

A major problem in network solutions to real world problems is optinial network

size. In our case, it is desirable to try and extract as many features as possible on



one hand, but it is clear that too many neurons in the network will simply inhibit
each other, yielding sub-optimal results. The following solution was adopted: We
replace each neuron in the network with a group of neurons which all receive the
same input, and the same inhibition from adjacent groups. These neurons differ
from one another only in their initial synaptic weights. The output of each neuron
is replaced by the average group activity. Experiments show that the resulting
network is more robust to noise and outliers in the data. Furthermore, i is observed
that groups that become selective to a true feature in the data, posses a much
smaller inter-group variance of their synaptic weight vector than those which do
not become responsive to a coherent feature. We found that eliminating neurons
with large inter-group variance and retraining the network, may yield improved
feature extraction properties.

The network has been applied to speech segments, in an attempt to extract some
features from CV pairs of isolated phonemes (Seebach and Intrator, 1988).

5 DISCUSSION

The PP method based on the BCM modification function, has been found capable of
effectively discovering non linear data structures in high dimensional spaces. Using
a parallel processor and the presented network topology, the pursuit can be done
faster than in the traditional serial methods.

The projection index is based on polynomial moments, and is therefore computa-
tionally attractive. When only the nonlinear structure in the data is of interest, a
sphering transformation (Huber, 1981, Friedman, 1967), can be applied firnt to the
data for removal of all the location, scale, and correlational structure from the data.

When compared with other PP methods, the highlights of the presented method are
i) the projection index concentrates on directions where the .s-parability prupertv ai
well as the non-normality of the data is large, thus giving rise to btter cla,,ificatiun
properties; ii) the degree of correlation between the directiun_., or ft,,tures cxtracted
by the network can be regulated via the global inhibition. allo%i ng sme tun ing of
the network to different types of data for optimal results; iii) the pursuit i done on
all the directions at once thus leading to the capability of finding inure inlteresting
structures than methods that find only one projection dir.ction at a time. i') the
network's structure suggests a simple method for size-optitnizat ion.
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